Телескопы-спринтеры или как поймать спутник

Как измеряют расстояние от Земли до космических объектов, их скорость и орбиту, для чего наблюдают за космическим мусором и почему тупят дорожные навигаторы — сейчас расскажем.

Большинству телескопов не надо быть быстрыми. Даже несмотря на движение Земли относительно наблюдаемых объектов — это физическое явление называется параллакс, — скорость движения большинства систем для наблюдений за звёздами и другими небесными телами составляет не более нескольких градусов в час. Многие телескопы вообще не перемещают за весь сеанс наблюдения. А вот в Санкт-Петербурге, в научно-производственном центре «Прецизионная электромеханика» университета ИТМО, создают цифровые электроприводы для телескопов и других систем наблюдения, требующих быстрого и точного перемещения. Что же это за объекты, для наблюдения за которыми требуются такие системы?

В поисках мусора

Несмотря на всё большее количество материалов, посвящённых теме космического мусора, люди до сих пор не до конца осознают масштабов этой проблемы. Количество запусков увеличивается год от года, растёт и число запускаемых космических аппаратов. Да, космос огромен. Но наиболее удобные и используемые орбиты уже сейчас достаточно сильно загружены. Требуется контролировать все объекты, включая даже самые небольшие обломки космического мусора, чтобы запускать новые космические аппараты на «свободное место», не подвергая их дополнительному риску. И без необходимости изменять орбиту, расходуя на манёвр такое нужное топливо.

К тому же после нескольких столкновений космических аппаратов или уничтожения их ракетой, запущенной с Земли (тут последними отличились Индия и Китай), надо учитывать огромное количество обломков. В том числе и очень маленьких. С учётом космических скоростей каждый такой обломок обладает огромной кинетической энергией. Частицы мусора размером с яблоко хватит для уничтожения практически любого спутника или целого модуля Международной космической станции.

Если раньше включением двигателей космических кораблей МКС корректировала свою орбиту только для того, чтобы компенсировать воздействие атмосферы, то в последние годы этот манёвр всё чаще приходится применять, чтобы избежать столкновения с обломками космического мусора. Следят за такими объектами многие страны. И, хотя информацией друг с другом они делятся, стараются всё наблюдать достаточно обособленно. Причина понятна: слишком уж схожи слежение за прекратившими работу космическими аппаратами и за военными спутниками-инспекторами потенциальных противников.

Суть работы одинаковая — постоянная проверка орбиты объекта и предупреждение в случае её изменения. Кроме определения орбиты вариантов наблюдения за спутниками-инспекторами немного. До начала движения объекта не выйдет точно определить, для чего предназначен тот или иной космический аппарат. Поэтому следят за всеми, а отмечают те, которые изменили свою орбиту.

Самая главная проблема такой работы заключается в том, что по низкой околоземной орбите спутники проносятся очень и очень быстро. Слишком быстро для земных наблюдателей. Время пролёта составляет десятки секунд, не более того. Для их поиска и отслеживания используют так называемые телескопы траекторных измерений (ТТИ). За это время система наведения ТТИ должна успеть точно нацелить телескоп на объект согласно внешнему источнику — альманаху, в котором находятся параметры орбиты наблюдаемых спутников. И перемещать телескоп, не выпуская объект из вида. В это время лазерный дальномер прибора с помощью лазерного луча вычисляет расстояние до космического аппарата и записывает результаты. Чем больше таких измерений дальности с привязкой ко времени и угловым координатам поворота телескопа, тем точнее можно определить характеристики объекта — орбиту, скорость и то, насколько он может быть опасен. После завершения измерений система должна максимально быстро навестись на следующую цель и вновь «выстрелить» в неё лазерным лучом несколько раз для уточнения координат.

В настоящее время такие оптико-электронные комплексы составляют основу автоматизированной системы предупреждения об опасных ситуациях в околоземном космическом пространстве (АСПОС) — российской системы по слежению за космическим мусором. Установки, входящие в эту систему, очень разные. Маленькие имеют размер с современную стиральную машинку. Большие могут быть гораздо объёмнее. Например, в ближайшее время сотрудники центра «Прецизионная электромеханика» будут настраивать электроприводы опорно-поворотного устройства большого телескопа на заводе «Тяжмаш» в городе Сызрань. Это телескоп для Алтайского оптико-лазерного центра имени Германа Титова, диаметр зеркала которого составляет более трёх метров, а вес — более девяноста тонн.

Естественно, что и электропривод такого телескопа должен быть гораздо мощнее. Часть установок находятся на территории России, часть за рубежом — например, в одной из крупнейших обсерваторий Бразилии Пико дос Диас. Всё это позволяет получать максимально полную картину о космическом мусоре по всему миру. Ну и не только о мусоре, как вы понимаете.

По словам специалистов, система способна обнаруживать в космосе на орбитах разной высоты объекты размером всего в несколько сантиметров. Вообще, характеристики подобных телескопов указываются через «звёздную величину», но эту характеристику ещё нужно переводить в размер в зависимости от дальности.

Для простоты, — объекты размером с волейбольный мяч такие телескопы обнаруживают без проблем. Каждый такой фрагмент космического мусора классифицируется и вносится в общемировые каталоги слежения. В настоящее время подобных набралось не меньше десятка: в одном — лишь потенциально опасные объекты, в другом — только космические аппараты, как действующие, так и не подающие признаков жизни.

ЦЭСП внутри телескопа

Именно для таких быстрых, но при этом очень точных прецизионных систем и создают приводы в санкт-петербургском ИТМО. Большинство телескопов траекторных измерений представляют собой двухосевые альт-азимутальные (то есть имеющие угломестную, или вращающуюся в вертикальной плоскости ось поворота) и азимутальные (имеющие вращающуюся в горизонтальной плоскости ось поворота) монтировки, на которые и устанавливается объектив телескопа и/или система лазерных дальномеров.

Вращение осей монтировки обеспечивают синхронные электродвигатели с постоянными магнитами. Именно они позволяют цифровому электросиловому приводу (ЦЭСП) очень быстро и очень точно перемещаться. Раньше использовались двигатели украинского производства, но последние несколько лет используют белорусские, хотя у них есть свои особенности.

Если упрощать, то работает ЦЭСП следующим образом. От центрального компьютера системы наведения на управляющий контроллер привода приходит серия координат, соответствующих траектории полёта объекта космического мусора или космического аппарата. Контроллер при помощи транзисторного преобразователя с широтно-импульсной модуляцией формирует напряжение заданной амплитуды и частоты в обмотках электродвигателей осей телескопа и, в соответствии с подаваемым напряжением, поворачивает оси телескопа на заданный угол, нацеливая объектив прибора в нужную точку небесной сферы.

Однопунктовая система для внешнетраекторных измерений ММКОС «Сажень-ТА» 

При этом специальные датчики углового положения осей телескопа с очень большой чувствительностью (разрешение датчика, использующего для уточнения углового положения специальное кольцо с насечкой, составляет примерно 2 в 24 степени) позволяют определить точность позиционирования и в случае необходимости скорректировать ошибку.

Такой датчик способен измерять угловое положение с погрешностью в сотые доли угловой секунды. Сам же электросиловой привод позволяет обеспечивать точность углового положения осей телескопа по датчикам при сопровождении космического объекта в одну угловую секунду — это всего лишь 0,00027 градуса, или менее одной миллионной части окружности (в полном обороте 360 градусов или 1 296 000 секунд). Зачем нужна такая точность?

Всё дело в том, что, например, при попытке «дотянуться» лазерным лучом до спутника ГЛОНАСС на средневысокой орбите высотой 19100 километров одна угловая секунда отклонения приведёт к тому, что лазерный луч окажется в ста метрах от того места, где должен находиться спутник. К счастью, луч лазера сфокусирован таким образом, чтобы диаметром пучка компенсировать возможные ошибки. Специалисты из ИТМО с гордостью говорят, что их система показывает результаты не хуже зарубежных L3 Technologies и MARS Scientific. Например, перспективная система лазерного сопровождения космических объектов SGSLR, разрабатываемая в интересах NASA, имеет схожие требования по точности наведения (суммарная ошибка наведения осей опорно-поворотного устройства — две угловые секунды).

На данный момент эта система существует только в виде прототипа NGSLR, и в Goddard Geophysical and Astronomical Observatory строится следующий опытный образец. Уточняя ГЛОНАСС Где ещё работают такие системы? Часть цифровых электросиловых приводов производства ИТМО установлена в лазерных станциях комплекса средств фундаментального обеспечения, создаваемого в рамках программы развития национальной системы ГЛОНАСС для увеличения точности работы системы. Проект получил шифр «Точка» и нацелен на уменьшение погрешности работы системы ГЛОНАСС до пяти сантиметров с нынешних 50-200 — за счёт субмиллиметровой точности измерения дальности до навигационных спутников.

За счёт чего предполагается этого достигнуть? Вся работа современной спутниковой системы геопозиционирования основана на точном времени прохождения пакета сигналов от спутника до устройства, в котором используются эфемериды — схемы расположения спутников на своих орбитах в данный момент. Устройство получает сигналы со спутников, измеряет, сколько времени пакет сигналов добирался от каждого из них, и на основании этого высчитывает своё местонахождение. Минимальное количество спутников для этого — четыре, но чем больше аппаратов видит устройство, тем точнее оно определяет свои координаты.

Проблема в том, что даже небольшая ошибка в позиции спутника на орбите и времени его прохождения в итоге приводит к отклонениям в работе навигатора или программы в смартфоне. Вот и получается, что навигатор ошибается на пару-тройку метров от реального положения. Как можно избежать этой ситуации?

Использовать системы комплекса лазерной дальнометрии искусственных спутников Земли. Да, они тоже работают на электроприводах, созданных в ИТМО. Кроме лазерного дальномера система в идеале должна получать сигнал от атомных часов. Чтобы не только определять координаты космического аппарата, но и сверять его время. Предполагается, что таких систем будет очень много (в настоящее время работают лишь несколько). За счёт внесения более точной информации в эфемериды — что происходит регулярно — все навигаторы и телефоны получают обновлённые данные с орбитами и временем прохождения спутников. Соответственно, постепенно будет повышаться точность работы ГЛОНАСС.

Кроме неё подобные системы используются и для слежения за взлетающими ракетами — как космическими, так и баллистическими. Стоящий на «Байконуре» комплекс «Сажень-ТА» помогает определять точные координаты стартующей ракеты в реальном времени и корректировать первые манёвры космического аппарата. А для инфракрасного канала нашлась ещё одна работа: во время заправки ракеты комплекс помогает определить, насколько полно заправлены баки топливом и жидким кислородом, чтобы избежать возможной аварии.

Так что, выходя из дома и пользуясь навигатором, иногда вспоминайте: в это время по всей Земле работают десятки станций, измеряющих расстояние от Земли до спутников и других космических объектов. Напряжённо жужжат электроприводы, вычерчивая максимально точные и очень быстрые фигуры, пытаясь поспеть за пролетающими спутниками. Небо режут лазерные лучи, непрерывно измеряющие расстояние до космических аппаратов. И всё это для того, чтобы вы поменьше ругались: «Ну что это за навигатор, опять на несколько метров ошибся и меня на другую сторону дороги отправил!»

https://warhead.su

Источник материала
Материал: Михаил Котов
Настоящий материал самостоятельно опубликован в нашем сообществе пользователем Linda на основании действующей редакции Пользовательского Соглашения. Если вы считаете, что такая публикация нарушает ваши авторские и/или смежные права, вам необходимо сообщить об этом администрации сайта на EMAIL abuse@newru.org с указанием адреса (URL) страницы, содержащей спорный материал. Нарушение будет в кратчайшие сроки устранено, виновные наказаны.

You may also like...


Комментарии